International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 1
ISSN 2229-5518

On a Subclass of Analytic Functions with negative Coefficient Pertaining to
oWq- Function*

V.B.L. Chaurasia”
Department of Mathematics, University of Rajasthan
Jaipur-302004, India
AND
R.C. Meghwal™
Department of Mathematics, Govt. Post Graduate College
Neemuch-458441, India
Abstract
The aim of this paper is to analysis the subclass SC(y,A,B) pertaining to the
Hadamard product of ,yg-function ([12]) with negative coefficients in unit disc
A={z:|z|<1}.
Further, coefficient estimates, distortion theorem and radius of convexity
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integral operator for function belonging to the class SC(y,A,B).
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1. Introduction

Let A denote the class of the function of the form
f=z+Y a, z“ (L)
k=2

which are analytic in the unitdiscA={z:|z|<1}.
A function f € A is said to belong to the class A of starlike functions of order

o (0 <a <), ifitsatisfies, for z € A, the conditions

Re{Zf'(Z)}>oc. (1.2)
f(2)

We denote this class by S’(a). Further, f € A is said to be convex function of order

a in A, if it satisfies

Re {1+Zf,n(z)}> a, Z €A, (1.3)
f (2

for some o (0 < o < 1). We denote this class k(o). Let T denote subclass of A,

consisting functions of the form
f =2-3 a 2", a 20 (1.4
k=2
The function
_ —2(1-o)
Sa(z)_z(l—z) , a(0<a<] ...(L.5)

is the familiar extremal function for the class S”(a), setting
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k
I1 (i-2a)

C(a, k) :izsz’ k >2, ...(1.6)

Using (1.5) and (1.6), we can write

Sa(z)=z+i C (oK) Z¥, (1.7)
k=2

Clearly, C(a,k) is a decreasing function in o, and that

1

0,0 < —

2

. 1
lim C(o,k) =<1 ,a== ...(L.8)

k —o0 2

1, 0c>1

2

By the definition of differential operator D", introduced by Slagean [8], we know

that

n _ c n k
D f(z)_z+kz_:2 k"a, z". ...(1.9)

Therefore Hadamard product of two analytic functions given by (1.7) and (1.9) can

be written as

(D"f *Sa)(z):z—i k" C(ak)a, 2%, ...(1.10)
k=2

Here we use the condition which is satisfied by the subclass SC(y,A,)

{ 1{z[kz(D”f*S ) (2 +(1-2)(D"F*S )2)] H
Re|1+= a’ o270 _qllsp,
v| 22D"F S )(@)+(1-A)ND S _)2)

L(1.11)

0<A<LO0<B<LyeC zeA)
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The Fox-Wright function [12, p.50, equation 1.5] appearing in this paper is
defined by

p

B I'(a, +k0cj)2k
_ @peprp |5 =L

pwq(z)_pwq{(bj,ﬁj)l,q ;Z}_k_o q ’ +(1.12)

- T(b, +kp k!

j=1

q p
where o, (j=1...., p)andp,(j=1,.., q)arerealand positiveand1+)_ B, >y a,.

=1 =1
Now we can write

I_BIF(aj) . ﬁf[aj+aj(k—1)]zk

[2{ v, @} =——z+ > = . .(1.13)
[1r®) “ 11 Ilb, +B,(k—=1)]k—1!
=1 L
and
p

B HF[aj+ocj(k—l)]zk
Al v DN =A@ v)=2+AY I

: , (114
k=2
g Ilb, +B,(k-1]k-1!

where

q

I riv,

A= ’;1 : ..(1.15)
I'(a.
Hl (a)

IJSER © 2012



International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 5
ISSN 2229-5518

2. Coefficient Estimates

Theorem 1. Let the function A[z{p\pq(z)}] is in the class SC(y,A,p) iff

p
) [T e, +o (k-1
AY, K"k +1-Ak=1-y(B-1)]C(a,K) H <y(1-P).
k=2

[T T, +B,(k-1)k -1t

=

.2.1)

Proof. Assume that the inequality (2.1) holds true, then by using (1.11)

1[ 2D A v )*S_} (D +(1-M{D"A@ v )*S_}(2] s
v| 22{D"AG v )*S,} (@ +(A-MD"AG v )*S }(2)
p
. I Ia, +0cj(k—1)]C(oc,k)
AY K" jzlq K +1-2)(1-K)izk?
N | Ilb, +B,(k-1)]k 1!
. o <1-P).
! . 11 F[aj+ocj(k—1)]C((x,k)
1-AY K" 'i [AK +1-A]z52
k=2
[ T, +B,(k-1k -1
j=1

Hence, by using the maximum modulus principle, A[z{pwq(z)}] Is in the class

SC(y,\,B). Conversely, assume that the function A[z{p\yq(z)}] defined by (1.14) is

in the class SC(y,A,B). Then we will have
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oo | 1[0 A )78, 1 (D +U-D"AR v, )8, ) (D] ;
+= , —1 (>,
Y KZ{D”A(Zp\Vq)*Sa}(Z)+(1—?»){D”A(Zp\|fq)*3a}(2)
p
. H F[aj +ocJ.(k—1)]C(a, K)
AS K" J=1q Ak +1-2]1-K)z*?
k=2
. g Ilb, +B,(k -1k -1t
Re 11+— . > 3,
! . I F[aj+ocj(k—1)]C(0L,k)
1-AY K" jzlq Lk +1-1]z5E
“Z ] Ilb, +B,(k=1)]k—1!
j=1
and now when z—1", we obtain
p
) [T T, +o (k-1
AY K'[AK+1-2](L-k) ClaK) H
k=2 [T rib, +B,(k-1)]k -1t
S >y (B-1)
. 11 F[aj+ocj(k—1)]C(oc,k)
1-AY K"[Ak+1-21] "::
k= [T T, +B,(k-1)k -1t
-1
and finally
p
) [T e, +o (k1)
AY K'[AK+1-A][k~1-y(B—1)] C(o, k) — H <y(1-B).
k=2

[T b, +B,(k-1)k -1t

=L
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Corollary 1. Let the function A[z{pwq(z)}] defined by (1.14) be in the class

SC(y,A,B). Then

p
IMa. +a. (k=1)]
[ e, 3 Y(1-P)

m Ib, + B, (k-Dk 11 - AK"DK+1-AK-1- v (B-DIC(oK)

=1

(k >2).

..(2.2)

and the equality is attained for the function A[z{p\yq(z)}] given by

A . 1A-p) < e
[, vy (2= k”[Xk+l—k][k—1—y([3—1)]C(a,k)Z 23

3. Distortion Theorem

Theorem 2. Let the function A[z{p\pq(z)}] be in class SC(y,A,B) then for

0<|z|=r

- v(A-B)
K" [k +1—A][K —1—y(B —1)] (oL K)

r <IAL{ v (D]

<r+ vd=p) r<. ..(3.D)

K"[AK +1-A][K =1—v(B —1)]C (o, K)

Proof. Using equation (2.3), we observe that

2| - v(A-B)
K" [AK +1-A][K —1—y(B—1)] C(o, K)

21* <IARL v, (23]

S|Z + Y(l_B) |Z|k
K[k +1= ][k 1= (B -D)]C (o, K)
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Now as we have assumed | z | = r < 1, we get the required result easily.

Corollary 2. If the function A[z{p\pq(z)}] is in the class SC(y,A,B) then

A[z{p\uq(z)}] Is included in a disc with centre at the origin and radius r, where

r=1+ vd=p) .
K" [AK +1-A][K =1—y(B-1)]C (o, K)

...(3.2)

Theorem 3. Let the function A[z{p\pq(z)}] be in the class SC(y,A,B) then

1_ v1-P)
kK" Ak +1- Ak —1—v(B—1)]C(a, K)

r*<|AL v, (DY

<14 v1-P) (ke
k" Ak +1- Ak —1—v(B—1)]C (a, K)

where equality holds for the function A[z{p\pq(z)}] given by (1.14).

kY(l_B) K—1
o <|A
K" [k +1— Ak —1—y(B—1)]C(0. K) [ <|A[A v, @I

<1+ k’Y(l_B) |Z|k—l
K"K +1—A][K —1— (B -1)]C (.. K)

Again by assuming | z | = r, we get the desired result easily.

4. Radius of Convexity
Theorem 4. If A[z{p\pq(z)}] is in the class SC(y,A,B) then A[z{pwq(z)}] IS

convexin|z|<R,, where
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]£[ Ila, +o,(k-1)]

R, =Inf. k™ [Ak+1-A][k ~1-y(B~1)]C(e. K) =L

=1

The result is sharp.
Proof. In order to establish the required result, it is sufficient to show that

2(Az{, v, ()
Az, v,

<l |z| < Rp.

In view of (1.4), we have

p
kk-DTT I, +o, (k-1 Fihs

AY . =

k=2 [T rb, +B,(k-1)k -1t

2lAZ, v, Y| L
Az v, (2] ‘ } ﬁr[aj+ocj(k—1)]|z|k‘1
1-AY k¥
k=2
H Ilb, +B,(k-1lk 1!
Hence, we get
p
I +o (k-Dyjz|*
AY K& b <1
2 TT b4 p (kDK 1! _
g [b, +p,(k=DJk-1!

But from Theorem 1, we have
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p
K" [k +1-AJ[k=1=y(B=D] C(e,K) [T TTa, +a (k-1)]

A Z : =1 <1 ...(4.3)
b vy @=p) [T Tib, +B,(k-Dlk 1!

=

and thus from (4.2) and (4.3), we obtain

1
2| {k”‘z WK +1-A][K —1—y(B-1)]C (o, K) }k—l

yd-B)
Hence A[z{pwq(z)}] Is convex in | z | < R,. The result is sharp and given by (4.1).

5. Closure Theorem

Theorem 5. Let the function A[z{IO v, (2}, (r=1,2,...,m) be defined by
r r

p
. Il T, +(xjr(k—1)]zk

A, v, (DH=2-A D q’=1 (5.1
k=2
| Ib, +B, (k=DIk-1!
=
for z € A, be in the class SC(y,A,3) then the function h(z) defined by
h@=z-Y b, 2"
k=2
also belongs to the class SC(y,A,), where
1 m
bk :EE akr, (52)

where
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p
[1 rla,, +o, (k-1

8, =A E ...(5.3)

[T b, +B, (k-1)]k -1t

=

Proof. Since A[Z{p v, (2}] belongs to SC(y,A,B), it follows from Theorem 1, that
r r

p

] [1 ra;, +o, (k-1

A k"[Ak+1-AJk -1-y(B-D]C (o, k) ’:1
k=2 [] Tib;, +B, (k=1)]

=

S vA-B) (r=12..,m)

Therefore

i K"[Ak +1-A]1[k —1-y(B-D)]C (. k) b,
k=2

-y k”[kk+1—k][k—1—y(B—1)]C(aak){ii akJ
k=2 M

13 [i k“[kk+1k][k1Y(B1)]C(0‘ak)aer <vd=p),
k=2

m
where a; is given by (5.3).

Hence by Theorem 1, h(z) eSC(y,A,B).

6. Integral Operators
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Theorem 6. Let the function A[z{p\yq(z)}] defined by (1.14) be in the class

SC(y,A,B) then p¢q (), defined by
0, =0 [(b B))l“’ 2} joz W, (%) dx ...(6.1)

also belongs to the class SC(y,A,B).

Proof. From the representation of ,¢4(z), it is obtained that

H F@) H I(a;-a, )+k0c 12X

(0, = —— z+z =
1 ro,) H [(b, ~B,)+kB] cr
j=1

1

and

H Ia, +(k— Da, 1 z¥
AL 9,D1= Z+AZ : ...(6.2)
Hrb +(K - 1)[3]k'

=1

where A is given by (1.15).

Therefore
p
H F[(a - )+koc ]
AZ K"[AK +1-A][K —1—y(B-1)]C (o, K) ‘ <y(B-1),
k=2 1‘[ [l(b, B, +kp,Tk!
=1
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13

Since A[z{pwq(z)}]eSC(y,x,B) so by virtue of Theroem 1, {Ap¢q(z)} is in the

class SC(y,A,B).

Then ,¢4(2) is univalent in | z | < R*, where

Theorem 7. Let the function {A p¢q(z)} is in the classSC(y,A,B) and defined by

equation (6.2).Then p¢q is univalent in | z | < R*, where

1
o :mf{k“[xk +1—X][k—l—y(ﬁ—l)]C(oc,k)}k—l’ >
Y(1-B)

The result is sharp.

Proof. In order to obtain the required result, it is sufficient to prove that
[A{ ¢,(@} -1l <1 for|z|<R”

Now since

p
| . g r[(aj—OLJ.)+|<OLJ.]|z|k 1
AL ¢, @} ~UI<A 2 = <1

2 TT 1. —B.)+kB.]k-1!
i1 J J J

But from Theorem 1, we know that

p
K" Ak +1-21Tk=1-7(B-D1C(o, W [ TTa, + o, (k=1)]

A — <1

k=2 v(1—B) F[bj+[3j(k—1)] k-1!
=1

From equation (6.4) and (6.5), we have
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1
2] < {k” [kk+l—k][k—1—y(B—1)]C(oc,k)}k—1’ k=2)

v(d-B)
The result is sharp and given by (6.3).

7. Special Cases

On putting ocj(jzl,..., p)=1andBj(j=1,..., g)=1 in the result (2.1), (3.1) and

(4.1), the coefficient estimates, Distortion Theorem and radius of convexity will also
applicable for Generalized Hypergeometric function ,F4(z). [1,p.73, equation 2].

We obtain the following results:

Q) Let the function [z{,F,(z)}] is in the class SC(y,A,B) iff

p
) [T i@, +(k-1)]
AY K'[AK+1-A][k-1-y(B-1)]C (oK) = <y(B-1).
k=2 [T i, +(k-1)] k-1

=1

(1.1

(1)  Let the function [z{p Fq(z)}] be in the class SC(y,A,B) thenfor0<|z|<r

- v(1-B)
K" [AK +1— 1]k —1—y(B-1)]C(ot, K)

r <|[z{ F, (2}

<rs vA=P) ik ..(7.2)
K" [AK +1—AJ[K —1—y(B—1)]C(a K)

any if [z{qu(z)}] is in the class SC(y,A,B) then [z{qu(z)}] IS convex in
| Z| <R, where
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: b
[T I, +(k-1)]
R =Inf.{k™ [k +1-2][k ~1-¥(B-D]C (o, k) ==
[T TL(b, + (k-1 k-1t
j=1
(7.3)

The result is sharp.
(IV) Closure property and integral operator for the function ,F,(z) can also be

examine to the class SC(y,A,B).
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